Accurate Deep Syntactic Parsing of Graphs: The Case of French
نویسندگان
چکیده
Parsing predicate-argument structures in a deep syntax framework requires graphs to be predicted. Argument structures represent a higher level of abstraction than the syntactic ones and are thus more difficult to predict even for highly accurate parsing models on surfacic syntax. In this paper we investigate deep syntax parsing, using a French data set (Ribeyre et al., 2014a). We demonstrate that the use of topologically different types of syntactic features, such as dependencies, tree fragments, spines or syntactic paths, brings a much needed context to the parser. Our higher-order parsing model, gaining thus up to 4 points, establishes the state of the art for parsing French deep syntactic structures.
منابع مشابه
Because Syntax Does Matter: Improving Predicate-Argument Structures Parsing with Syntactic Features
Parsing full-fledged predicate-argument structures in a deep syntax framework requires graphs to be predicted. Using the DeepBank (Flickinger et al., 2012) and the PredicateArgument Structure treebank (Miyao and Tsujii, 2005) as a test field, we show how transition-based parsers, extended to handle connected graphs, benefit from the use of topologically different syntactic features such as depe...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملTreebank-Based Acquisition of LFG Parsing Resources for French
Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in automatically obtained wide-coverage grammars from treebanks for natural language processing. In particular, recent years have seen the growth in interest in automatically obtained deep resources that can represent information absent from simple CFG-type structured treeban...
متن کاملFrench parsing enhanced with a word clustering method based on a syntactic lexicon
This article evaluates the integration of data extracted from a French syntactic lexicon, the Lexicon-Grammar (Gross, 1994), into a probabilistic parser. We show that by applying clustering methods on verbs of the French Treebank (Abeillé et al., 2003), we obtain accurate performances on French with a parser based on a Probabilistic Context-Free Grammar (Petrov et al., 2006).
متن کامل